IBAIA will develop four innovative optimally functionalised sensor modules based on complementary photonics and electrochemical (EC) technologies to better meet end user needs and improve environmental water quality monitoring.
Environmental water pollution is a growing global issue, leading to increasing regulations and concurrent increased demand for improved water quality monitoring solutions to meet the European Green Deal objectives. Real time in situ devices offers the promise of more rapid and efficient monitoring, and numerous such solutions are available from a wide number of primarily non-EU suppliers. However, existing in situ solutions detect very limited parameters, and are restrained by high costs, low reliability, and high energy usage. To better meet end user needs and improve environmental water quality monitoring, novel sensing technology is required. To this end, IBAIA will develop four innovative optimally functionalised sensor modules based on complementary photonics and electrochemical (EC) technologies. Mid-IR will be used to detect organic chemicals, Vis-NIR for microplastics and salinity, Optode technology for physicochemical parameters, and EC technology for nutrient salts and heavy metals. Leveraging consortium expertise in cutting edge material science, microfluidics, data processing and integration/packaging technology, these four sensors will be integrated and packaged into a single advanced multisensing system and validated by end users in real in situ conditions. The IBAIA system will more accurately monitor a wider range of parameters than existing solutions, whilst simultaneously being more cost effective, more reliable, more environmentally friendly to manufacture, and more user friendly to use. These dramatic improvements will manifest in an extremely competitive product that acts as a one-size-fits-all solution for many end users, with a highly EU-centric supply chain, that will supplant a wide number of inferior non-EU alternative solutions.